Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Chinese journal of integrative medicine ; (12): 131-138, 2019.
Article in English | WPRIM | ID: wpr-776646

ABSTRACT

OBJECTIVE@#To investigate the anti-neuroinflammation effect of extract of Fructus Schisandrae chinensis (EFSC) on lipopolysaccharide (LPS)-induced BV-2 cells and the possible involved mechanisms.@*METHODS@#Primary cortical neurons were isolated from embryonic (E17-18) cortices of Institute of Cancer Research (ICR) mouse fetuses. Primary microglia and astroglia were isolated from the frontal cortices of newborn ICR mouse. Different cells were cultured in specific culture medium. Cells were divided into 5 groups: control group, LPS group (treated with 1 μg/mL LPS only) and EFSC groups (treated with 1 μg/mL LPS and 100, 200 or 400 mg/mL EFSC, respectively). The effect of EFSC on cells viability was tested by methylthiazolyldiphenyltetrazolium bromide (MTT) colorimetric assay. EFSC-mediated inhibition of LPS-induced production of pro-inflammatory mediators, such as nitrite oxide (NO) and interleukin-6 (IL-6) were quantified and neuron-protection effect against microglia-mediated inflammation injury was tested by hoechst 33258 apoptosis assay and crystal violet staining assay. The expression of pro-inflammatory marker proteins was evaluated by Western blot analysis or immunofluorescence.@*RESULTS@#EFSC (200 and 400 mg/mL) reduced NO, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in LPS-induced BV-2 cells (P<0.01 or P<0.05). EFSC (200 and 400 mg/mL) reduced the expression of NO in LPS-induced primary microglia and astroglia (P<0.01). In addition, EFSC alleviated cell apoptosis and inflammation injury in neurons exposed to microglia-conditioned medium (P<0.01). The mechanistic studies indicated EFSC could suppress nuclear factor (NF)-?B phosphorylation and its nuclear translocation (P<0.01). The anti-inflammatory effect of EFSC occurred through suppressed activation of mitogen-activated protein kinase (MAPK) pathway (P<0.01 or P<0.05).@*CONCLUSION@#EFSC acted as an anti-inflammatory agent in LPS-induced glia cells. These effects might be realized through blocking of NF-κB activity and inhibition of MAPK signaling pathways.


Subject(s)
Animals , Astrocytes , Metabolism , Pathology , Cell Line , Cell Nucleus , Metabolism , Chromatography, High Pressure Liquid , Down-Regulation , Inflammation , Pathology , Inflammation Mediators , Metabolism , Lipopolysaccharides , MAP Kinase Signaling System , Mice, Inbred ICR , Microglia , Metabolism , Pathology , NF-kappa B , Metabolism , Nervous System , Pathology , Neurons , Metabolism , Pathology , Neuroprotective Agents , Pharmacology , Plant Extracts , Pharmacology , Schisandra , Chemistry , Spectrometry, Mass, Electrospray Ionization
2.
Chinese journal of integrative medicine ; (12): 117-124, 2018.
Article in English | WPRIM | ID: wpr-327223

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the relationship between tissue distributions of modified Wuzi Yanzong prescription (, MWP) in rats and meridian tropism theory.</p><p><b>METHODS</b>A high-performance liquid chromatography with Fourier transform-mass spectrometry (HPLC-FT) method was used to identify the metabolites of MWP in different tissues of rats after continued oral administration of MWP for 7 days. The relationship between MWP and meridian tropism theory was studied according to the tissue distributions of the metabolites of MWP in rats and the relevant literature.</p><p><b>RESULTS</b>Nineteen metabolites, mainly flavanoid compounds, were detected in the different rat tissues and classified to each herb in MWP. Further, it was able to establish that the tissue distributions of the metabolites of MWP were consistent with the descriptions of meridian tropism of MWP available in literature, this result might be useful in clarifying the mechanism of MWP on meridian tropism. In the long run, these data might provide scientific evidence of the meridian tropism theory to further promote the reasonable, effective utilization, and modernization of Chinese medicine.</p><p><b>CONCLUSION</b>The tissue distributions of MWP in vivo were consistent with the descriptions of meridian tropism of MWP.</p>

3.
China Journal of Chinese Materia Medica ; (24): 1994-1998, 2015.
Article in Chinese | WPRIM | ID: wpr-351225

ABSTRACT

[To explore the effect of Humifuse Euphorbia Herb ( HEH) on alleviating insulin resistance in type 2 diabetic KK-Ay mice. Totally 40 KK-Ay mice fed with high-fat diet were divided into four groups: the metformin group, the model group, the HEH low-dose group and the HEH high-dose group, and orally administrated with metformin hydrochloride (250 mg x kg(-1)), distilled water, humifuse euphorbia herb 1 g x kg(-1) and 2 g x kg(-1). Besides, C57BL/6J mice with ordinary feed were taken as the normal control group and orally administrated with equal distilled water. The oral administration for the five groups lasted for eight weeks. Before and after the experiment, weight, fasting glucose and insulin tolerance were determined. The morphological changes in pancreas were observed through hematoxylin-eosin (HE) staining on pancreatic tissue sections. The serum insulin, TNF-α, IL-6, adiponectin (ADPN) and leptin (LEP) were detected by ELISA. The results showed that HEH could reduce weight and fasting glucose in KK-Ay mice, alleviate hyperinsulinemia, reduce blood glucose-time AUC, increase 30-min blood glucose decline rate, relieve insulin resistance, significantly ameliorate the pathomorphological changes in pancreas in each group, decrease serum TNF-α, IL-6 and leptin levels in KK-Ay mice and rise serum ADPN level. This study proved that humifuse euphorbia herb can ameliorate the insulin resistance in KK-Ay mice, and its mechanism may be related to the effect on inflammatory factors and adipocytokines.


Subject(s)
Animals , Humans , Male , Mice , Blood Glucose , Metabolism , Diabetes Mellitus, Type 2 , Drug Therapy , Genetics , Metabolism , Disease Models, Animal , Drugs, Chinese Herbal , Euphorbia , Chemistry , Insulin , Metabolism , Insulin Resistance , Interleukin-6 , Genetics , Metabolism , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha , Genetics , Metabolism
4.
Chinese Pharmaceutical Journal ; (24): 1874-1879, 2015.
Article in Chinese | WPRIM | ID: wpr-859313

ABSTRACT

OBJECTIVE: To study the effect of modified wuzi-yanzong prescription(MWP) on brain gene expression profile in senescence accelerated mouse-prone/8 (SAMP8) mice and detect the mechanism of MWP treating dementia-related diseases. METHODS: Six SAMP8 mice were randomly divided into model group and MWP group on average, meanwhile three senescence accelerated mouse-resistance/1 (SAMR1) mice were chosen as the blank control group. The MWP group was intragastrically intervened by MWP 9 g · kg-1 · d-1, while model group and control goup were given equal volume of sodium carboxyl methyl cellulose, once a day. After 10 d, the mice in experiment were killed and seperated the whole brain. Brain RNA expression was analyzed using Illumina whole genome expression profiles. RESULTS: Compared with the model group, 293 differential genes were screened in the MWP group, including 179 up-regulated genes and 114 down-regulated genes. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated 17 key targets about differentiation and proliferation of neural stem cells, including Notch pathway, Rap1/B-Raf/ERK pathway and related target proteins; 9 key targets about neural endocrine-immune (NEI) network, including follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin, thyroid stimulating hormone (TSH), etc. CONCLUSION: The action mechanisms of MWP on brain in SAMP8 mouse involve the regulation of proliferation and differentiation of neural stem cells and NEI network.

SELECTION OF CITATIONS
SEARCH DETAIL